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Received 30 October 1973 

Abstract. The c-number variation in the quantum-mechanical action principle of Schwinger 
is extended to a q-number variation which uses an action integral analogous to the classical 
modified Hamilton action integral. An explicit realization of the admissible q-number 
variation for the hamiltonian operator, H ,  given by 

H(q ,p ,  2) = 4pjgJk(qlpt+${A’(q),  ~ j }  + Wq, t )  

is discussed in terms of Gauteaux variation. The action principle yields the correct Hamilton- 
Heisenberg equations and a relationship between the lagrangian L and the hamiltonian H. 
I t  is also shown that while the fundamental commutation relation is successfully derived by 
Schwinger in his c-number variational principle, the same argument cannot be used in 
the present q-number variation. A new method of quantization is suggested. 

1. Introduction 

The need for a q-number variational principle in lagrangian formalism of quantum 
mechanics (QM), where the principle is applied to the action integral 9 defined by 

d 
Y(q, 4) = J:: L(q, 4, t )  dt, 4 = p  (1.1) 

has already been discussed by Cohen and Shaharir (1973a, b) in detail. In short, since 
the commutation relation (CR) between q and 4 is, in general, not a multiple of the 
identity operator (c number), the ‘variation’ in q (hence q)  must be a q number. For 
example in the case where the CR 

[%41 = iMq)  (1.2) 
a c-number variation implies that g must be independent of the operator q. Thus c- 
number variation is applicable only in the euclidean space. 

We are interested in the possible extension of the so-called ‘modified Hamilton 
variational principle’ (Leech 1968), where the action integral (1.1) is (classically) sub- 
stituted by a new functional f defined by 

d‘ / N \ 

or in homogeneous formalism 

(i1 P k  dqk - H(q,  p ,  t ,  d t  5 1 f ( q ,  t ,  dq, dt, p )  = 

On leave of absence from Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia. 

( 1 . 3 ~ )  

(1.3b) 
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into the quantum domain. I t  is well known that the classical modified Hamilton homo- 
geneously variational principle which is precisely prescribed by the Gauteaux variation 

6 A q ,  t ,  dq, dt ,p ; dq, 6 4  Wq),  6(W, 6p) 
lim c - ’ ( $ ( q +  d q ,  t+cBt,dq+ d(dq),dt + r b ( d r ) , p + c s p ) - ~ ( q , t , d q , d t , p ) )  

= o  (1.4) 
( 4 0  

such that 

6q(t‘) = 6q(t”) = dt(t‘) = 6t(t”) = 0 (1.5) 

6p(t’) = 6p(t”) = 0, (1.6) 

6d = d6, (1.7) 

leads to the Hamilton equations : 

Similarly, the classical non-homogeneous variational principle yields equation (1.8) 
which is then used to derive (1.9) algebraically. 

In quantum mechanics (QM), one tends to define an analogue of the action integral 9 
in (1 .3~)  and (1.3b) as an operator W given respectively by 

(1.1 Oa) 1 2’‘ 1 N 

W(q,4,p)  = 1, [zkFl {Pk’$k)-H(q~p~t) d t l  

and 

W(q9 t ,  dq, dt, P) = - { ~k 3 dqk} - H(q, P, t )  dt 3 (1. lob) 

where the variables q, q, dq,p are hermitian operators but t and dt are c-number. ( { A ,  B }  
denotes anticommutator, A B  + BA.)  Then by postulating a quantum variation 6, in 
which 6q, 6p and 6t  are multiples of identity (ie c numbers) and they satisfy conditions 
(1.4)+.7), the Hamilton-Heisenberg equations can be obtained in the usual manner. 
Similar results are obtained if one substitutes equations (1.4H1.6) with a single equation 

l:(; ,,, 1 

6W = J ( t ” ) - J ( t ’ )  (1.11) 

for some operator J. This is essentially the ‘action principle’ of Schwinger (1953a, b, 
1970), though he did not use the action integral (1 .10~)  or (1.10b) explicitly. 

However it is clearly inconsistent to apply the same variational principle to the two 
invertible action integrals (1.1) and (1.10); the former has already been shown to be a 
q-number variation, whereas the latter is a c number. Furthermore since, as Schwinger 
(1957) has pointed out, the lagrangian L defined by the integrand (1.10~) is necessarily a 
euclidean model for the Boson system, there is prima facie evidence that his c-number 
action principle may not be correctly applied to a general lagrangian model in riemannian 
space. Moreover Lin et a1 (1970) had shown ‘algebraically’ that an acceptable lagrangian 
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in a flat riemannian space is given by 

h2 . 
u q ,  4)  = t b k ’  qk}  +qgJkry-;,-H(q,p), (1.12) 

where gJk is the contravariant metric tensor operator and r:k is the usual Christoffel 
symbol (operators). It is clear, a c-number variational principle is not adequate, and 
Schwinger’s action principle must be extended to a q-number variational principle. 

In this paper we will postulate a q-number variational principle for the non-homo- 
geneous and homogeneous action integral defined respectively as 

.4P(!Z? 4 , P )  = 1;’‘ df(i{t)k’ d k }  +9(q?P? c)-H(q,p,  t ) )  ( 1.1 3a) 

and 

yP(4, t ,  dq, dt, P) = [i { P k  3 dqk} -l (g(4,  PI t )  - H ( q ,  P, t ) )  dtl. (1.13b) 

The existence of the hermitian operator 9 will be postulated such that the q-number 
variation 6 ( 9  - H) in (9 - H) differs from 

s,: 

at 

by at most a total derivative d%/dt of an operator ’3. Following Schwinger we postulate 
further that the variation 6 9  in Y depends only on the end points t‘ and f”,  namely 

6 9  = J( t”)-J( t ’ ) ,  (1.14) 

In 5 3 an explicit realization of the q-number variational principle is discussed by 

(1.15) 

where det(gjk) # 0, and H is a hermitian operator. There the 6 variation is defined in 
terms of Gauteaux variation as used in the classical ‘calculus of variation’ of Gel’fand 
and Fomin (1963) and Vainberg (1964). It is shown that the assumptions of the funda- 
mental CR and the conditions derived from the admissible variation of the operator 
[q, 43 yields the derived operator 9 and ’3 postulated in $ 2. It turns out that with the 
derived operator 9, the integrand in (1.13) coincides with equation (1.12). Thus it gives 
further partial explanation to the validity of the ‘transformation’ (1.12) in a general 
riemannian space. 

In relation to the derivation of the fundamental CR via Schwinger’s action principle, 
it is shown in $4, that the same argument cannot be used for the present q-number 
variation. A new method of deriving the same CR is proposed. 

and the usual Hamilton-Heisenberg equations are obtained. 

considering an explicit lagrangian whose hamiltonian H is given by 

H(q ,p ,  t ,  = tpjgjk(q)pkf${pj, A’(q)} + w(q? t ) ,  

2. The postulate of the q-number action principle 
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or in homogeneous formulation 

All operators are assumed to be hermitian. While the coordinate q and the momentum 
p are operators, the time variable t is assumed to be a c number. The operator 9, a 
function of q and p and t ,  is chosen such that it satisfies the following postulate of the 
q-number variational principle. There is a variational mapping 6, for which the variation 
6 9  in the operator 9 satisfies the identity 

d 
dt 

6 9 - - ( 6 t 9 )  = (2.3) 

Thus the operator 9 is determined uniquely by 6H the variation in the hamiltonian H. 
In the case where t is not varied, we may assume a variation 6, such that 

(2.4) 

Further, following Whittaker (1961) and Schwinger (1953a, b, 1970), we will assume that 
6 and d/dt are commutative. In particular 

Following Schwinger again, we assume that the variation 6 9  in the action integral (2.2) 
depends only on the end points t' and t", ie 

6Y = J (  r " )  - J ( t ' )  (2.6) 

for some operator J .  A similar postulate may be made for the variation 6, on the action 
integral (2.1) or (2.2). 

Now assuming the usual properties of 6 variation, we have by (2.2) 
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Then assuming 6q, bt, 6 p  are non-singular independent variables and applying the 
action principle (2.6), we may infer 

(2.10) 

(2.1 1) 

and 

Thus we have shown that the Hamilton-Heisenberg equations (2.9H2.11) can be 
derived from a variational principle which we will refer to as the modified Hamilton- 
Schwinger q-number homogeneous variational principle. Note that a similar calculation 
shows equations (2.9) and (2.10) can also be derived from the corresponding non- 
homogeneous variational principle, where the variational mapping 6, is used instead of 
6. However, unlike in the classical theory, equations (2.9) and (2.10) are not sufficient to 
be used to derive (2.1 1) algebraically, because q and p are non-commutative variables. 
For this reason the homogeneous formalism seems to be fundamentally more important 
than the non-homogeneous one. In fact the homogeneous formalism can be used to 
derive the CR between q and p. Discussion on the possible derivation of this CR is 
deferred to 5 4. 

3. An explicit realization of the q-number variational principle 

In this section we show an explicit realization of the q-number variation principle, 
which was postulated in the previous section, 9 2, in terms of the Gauteaux variation. 
We will consider a class of operator H defined by 

(3.1) H(q ,p ,  t )  = h j g j k ( q ) P k +  { P j ,  A j (q ) } )+  w(q, l)? 

where q and p form a pair of canonical conjugate variables which satisfy the following 
commutation relations: 

[qj ,  qk1 = 0 = [ P r ,  P m l  (3.2) 

[ q j , p k ]  = ihb’,. (3.3) 

d k  = - (q ,p ,  t )  = i ( (P j ,  gik(q)}  +2Ak(q)) 

[qj ,  qk] = ihgjk(q).  ( 3 . 5 )  

and 

For this purpose we may assume that the velocity operator q is defined by 

a H  
(3.4) 

aPk 
and hence q satisfies the CR 

I t  is sufficient to consider only the variation 6, which keeps t unchanged. 
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Now by the definition of 6, we have 

Let us restrict ourselves to the admissible q-number variation Sq of the operator q 
given by 

6q' = a'(q, t ; A ( t ) ) + & P ( t ) ( g J k , P k }  (3.7) 

where the c number A ( t )  and P(t)  are small independent parameters. This is a general 
admissible q-number variation for which the variation SO of the operator O(q) function 
of q may be expressed as 

so = - -.,SqJ 
2 Ya0 aqJ I 

as discussed by Cohen and Shaharir (1973b). Thus equation (3.6) now may be written as 

Define 

Equation (3.9) can now be written as 

Now, by definition, we have 

(3.10) 

(3.1 1 )  

(3.12) 

Since 

(3.13) 
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hence from (3.12), we deduce 

(3.14) 

Further using equations (3.13) and (3.7), the CR between Sq a n d p  may be settled. Thus 
we obtain 

and deduce 

Applying the results in (3.13H3.16) into (3.10) we deduce 

(3.15) 

(3.16) 

(3.17) 

Using similar arguments as those in (3.12)-(3.14), the existence and uniqueness of the 
variation S([qj, qk])  in the commutator qJ with qk, (3.9, implies 

(3.18) dP gjl(ak - B( t)Ak);l + gkl(d - b( t)A’);l + gjk- = 0 
dt ’ 

where we have defined 

(3.19) 

the contravariant derivative of a vector component vJ. It is also easy to show that, for any 
continuously twice differentiable vector field U (Cohen and Shaharir 1973b) 

By applying equations (3.18) and (3.20) into equation (3.17) we obtain 

a .  
aq 

E = hZ7(gJkr;r;,,,)(d - p ( t ) k ) .  

Equation (3.21) may further be simplified to give 

(3.21) 

(3.22) 

By (3.1 1) and (3.22) we may identify the operators 9 and 9, so that equations (2.3) and 
(2.4) are satisfied. The action integral may now be defined explicitly : 

(3.23) 
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and the action principle described in 0 2 yields the correct canonical equation 

a H  p k =  -- 
aqk 

(provided 6q is non-singular). 
The above analysis suffices to show that the q-number variational principle pos- 

tulated in $2 is not empty. The result also gives further partial explanation to the justifi- 
cation of adopting the 'transformation' 

L = f{ Pk , q k }  + $h2gjkr;r;, - H ( q ,  p ,  t )  (3.24) 

without the additional term $h2R which otherwise may arise from the algebraic method 
of Lin et a1 (1970) and Kimura (1971). ( R  is the usual Riemann curvature scalar.) 

Indeed, earlier Lin et al had determined 9 in flat riemannian space by insisting that 
the expression + { P k ,  q k )  + 9 becomes f { M k r  X k }  and vice versa under the point trans- 
formation 

q 0 x: X k  = X"q), qk = 4 0 )  

(3.25) 

where X and M are coordinate and momentum in an euclidean space respectively. 
The flatness of the space ensures that the transformation (3.25) exists everywhere in the 
space. A tedious calculation shows that under the above transformation 

{ M , ,  x k }  = { p k ,  $} + $ h * ~  + $h2gjkr;r;, , (3.26) 

as found by Lin et al. Since the space is flat (ie R = 0) the relation between L and H 
in the flat riemannian space is exactly given by (3.24). Clearly this algebraic method of 
determining 9 in a general riemannian space is ambiguous. Locally, it looks as though 
the term involving R should be retained if the space is curved. However later, Kimura 
(1971) insisted that the relation (3.24) must also be true in all riemannian space by 
incorporating the term ah2R into the lagrangian or hamiltonian. Our result through the 
above action principle shows that Kimura's argument is somewhat dubious. 

4. Fundamental commutation relation 

Schwinger (1953a, b, 1970), in his c-number 'action principle' had obtained the funda- 
mental CR (3.2) and (3.3) by identifying the operators 

Tp = -6pkqk, Tq = pk6qk (4.1) 

induced by the 'action principle', as the infinitesimal generators for the momentum 
translation and spatial translation respectively. Essentially the identification of the 
generators in (4.1) is possible only if the Heisenberg equation 

(4.2) 
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and the Hamilton-Heisenberg equations (2.9H2.1 l), yield the CR 

However in the present q-number variation the above argument can no longer be used. 
Indeed, considering the simplest q-number variation where 6q and 6p are functions of 
q and p respectively, the variational principle provides us with generators 

J ,  = + { P k ,  &Ik) 
J ,  = -+{qk, h). 

Then Schwinger’s argument fails to give equations (4.7) and (4.8) : 

(4.8) 

Thus, while in c-number variation equations (4.7) and (4.8) may be derived, but for the 
q-number variation, the same equations need to be postulated. These results are not 
surprising, since the CR obtained through the c-number variational principle are just 
sufficient conditions for the consistency between the canonical equations (2.9H2.11) 
and the essentially postulated Heisenberg equations for the operators q and p .  The 
following, we propose a simple derivation of the CR without using the Heisenberg 
equation, (4.2). 

We have already seen that for a class of hamiltonian given by equation (3.1), the 
fundamental CR (3.2) and (3.3) are sufficient to yield a consistent formulation of the 
q-number variational principle. Now let us define 

then since 6t is a c number, the right-hand side of equation (4.1) may be reduced to 

H(q + w, p + stp, t )  - H(q,p, t) + aH(%P, t) lim 
81-0 6t a t  

However the variational principle requires dH/dt equal to the partial derivative aH/dt 
of H with respect to time. Thus we must have a condition 

(4.10) 

where 4 and p satisfy equations (2.9) and (2.10) respectively. It can be shown that the 
CR listed in (3.2) and (3.3) are sufficient for the validity of the equation (4.10). 

We conclude that while the generator J induced by the c-number variational principle 
may naturally serve to obtain the fundamental CR i t  is not so in the case of the q-number 
variational principle. 
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There remains a possibility of deriving the CR via the (q-number) variational principle 
of Peierls (1952) which we will discuss further in a later work. 

5. Conclusion 

We have extended the modified Schwinger’s c-number ‘action principle’ (1953a, b, 
1970) to the admissible q-number variational principle. However, unlike the c-number 
variational principle where the transformational generator induced by the ‘action 
principle’ may naturally serve to determine the fundamental commutatives relation, it is 
no longer true in the present formulation. A new simple method of deriving the funda- 
mental commutation relation is suggested. This is done by drawing a sufficient condi- 
tion for the consistency between the derived Hamilton-Heisenberg equations and the 
intrinsic definition of the total derivative of the hamiltonian. 
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